Function and benefit of green manures Matt Ruark Jaimie West Richard Proost Mike Ballweg University of Wisconsin-Madison University of Wisconsin-Extension Jim Stute Michael Fields Insitute 2018 Ograins Conference Jan. 26, 2018 Madison, WI #### Grasses Winter rye (or cereal rye) Annual ryegrass Oat Barley Triticale - Establish and grow quickly - Scavenge soil nitrogen - High C:N ratio #### **Brassicas** ### Radish Mustard Turnip - Slower to establish - Scavenge soil nitrogen (even more than the grasses if given enough time) - Medium C:N ratio ### Legumes Red Clover Berseem Clover Crimson Clover Hairy Vetch - Slower to establish - Fix N from atmosphere - Low C:N ratio ### Why the C:N ratio matters Soil microorganisms degrade plant material. They need nitrogen to do this. If plant material has a high C:N ratio (>30), then the soil microbes use the N in the soil. If the plant material has a low C:N ratio (<20), then there plant material can supply more than enough N for the microbes and a lot of N is left over after the plant decomposes ### Study locations in Wisconsin #### Frost-seeded red clover into winter wheat #### Funded by Wisconsin Fertilizer Research Council - mid-March to mid-April interseed red clover (12 lb/ac) - Late July harvest winter wheat grain - Early/mid-Sept. clip clover to 4-6" - Late october/early spring mechanically terminate # Nitrogen credits are determined as the difference between argonomically optimum N rates # Yield response from Janesville in 2010 shows a 41 to 82 lb-N/ac N credit from red clover (plus yield gains) ## Use of red clover reduced soil nitrate in the fall and increase soil nitrate at sidedress | | Fall
(0-1') | Fall
(1-2') | PSNT (0-
1') | | |------------|----------------|----------------|-----------------|-------------------------| | | | | | | | No cover | 2.4 | 1.0 | 10.4 | 0 lb-N/ac
N credit | | Red clover | <0.1 | <0.1 | 20.5 | 100 lb-N/ac
N credit | ## Sheboygan County berseem and crimson clover study in 2015 - August 15, 2014 covers planted - Berseem clover, 15 lb/ac - Crimson clover, 15 lb/ac - None #### 2015 - April 30 Corn planting - May 7 Nitrogen added - **8** N rates (0, 40, 80, 120, 160, 200, 240, 280 lb/ac) - Nov. 9 Corn harvest # Crimson clover had 47 lb-N/ac in above ground biomass (C:N = 16) # Berseem clover had 75 lb-N/ac in above ground biomass (C:N=14) ## Berseem Clover—Spring Residue ## Crimson Clover—Spring Residue # Crimson clover provides an N credit, both crimson and berseem clover provide yield benefits # Crimson clover provides an N credit, both crimson and berseem clover provide yield benefits ### But no N credit based on PSNT | | PPNT
(0-1') | PPNT
(1-2') | PSNT (0-
1') | |----------|----------------|----------------|-----------------| | | N | itrate-N (pp | m) | | No cover | 3.5 | 3.3 | 8.6 | | Crimson | 3.7 | 2.6 | 5.3 | | Berseem | 3.7 | 3.2 | 8.7 | ## Sheboygan County berseem and crimson clover study in 2016 ``` Soil - Kewaunee Silt Loam 2015 ``` - August 12 Clovers planted (15 lb/ac) - Sept. 4 TSP and KCI - Nov. 5 Clover biomass sampling (end of growth)2016 - May 8 Corn planting - June 20 N fertilizer application - Nov. 15 Grain harvest ## Crimson had the clearer N credit, Berseem had the clearer yield benefit # There was plenty of nitrogen in the soil, no N credit of legumes relative to the no cover crop plots | | PPNT
(0-1') | PPNT
(1-2') | PSNT (0-
1') | |----------|-----------------|----------------|-----------------| | | Nitrate-N (ppm) | | | | No cover | 5.7 | 3.1 | 19.6 | | Crimson | 8.2 | 3.4 | 22.4 | | Berseem | 7.8 | 2.5 | 18.6 | | Cover crop | Nitrogen credit | Yield difference | |------------|-----------------|------------------| | | lb-N/ac | bu/ac | | Red clover | 46 | 27 | | Red clover | 92 | -16 | | Crimson | 168 | 4 | | Crimson | 46 | 2 | | Berseem | 40 | 15 | | Berseem | 15 | 13 | | Average | 68 | 8 | #### Review of Corn Yield Response under Winter Cover Cropping Systems Using Meta-Analytic Methods White et al., 2016 Agronomy Journal Fig. 3. The cover crop biomass characteristics and soil NO_3^-N concentrations used to calibrate Eq. [3] to predict corn yield response, averaged by cover crop treatment across all experiments. Cover crop treatments included in the data set are listed on the y axis, with species codes used from Table I. In the first and second columns are the cover crop biomass N content (N_{cc}) and C/N ratio $[(C/N)_{cc}]$ for winterkilled and winter-hardy components of each treatment. In the third column are soil NO_3^-N concentrations measured in the 0- to 20-cm depth segment at the time of cover crop termination in spring. In the fourth column, blue bars are the model prediction for the corn yield response (ΔY) and black dots are the measured ΔY bounded by a 95% confidence interval of the mean. The ΔY was calculated as the difference between the corn yield after a cover crop and the corn yield after no cover crop. Cover crop treatments are sorted in ascending order of ΔY as predicted by the model. ## The magnitude of the N credit of a legume will vary from year to year and site to site. - Environmental factors like moisture and temperature are the drivers of decomposition and mineralization. - Some sort of predictive model based on these factors would be necessary to fine-tune N recommendations when N is applied at sidedress. - There are current efforts, both university and industry, to develop these models. - In my opinion, this is the biggest gap in predictive model development accurately predicting the release of N from organic sources (cover crops and manure). ### Summary - Clear N credit of red and crimson clover - Yield benefits with most clovers - No green manure N credit for radish - Use of clovers in rotations with small grains enhance the benefit of the diversified rotation Questions? Comments? Concerns?