



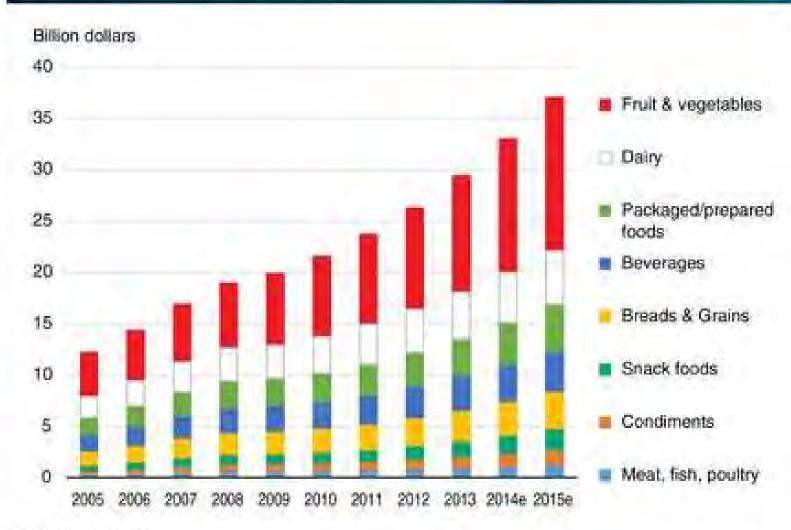

## OGrain Conference 2018

## Specialty Grains for Food and Feed



"[A] quotation is a handy thing to have about, saving one the trouble of thinking for oneself, always a laborious business."

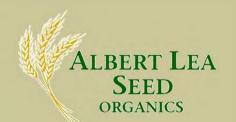
- A.A. Milne



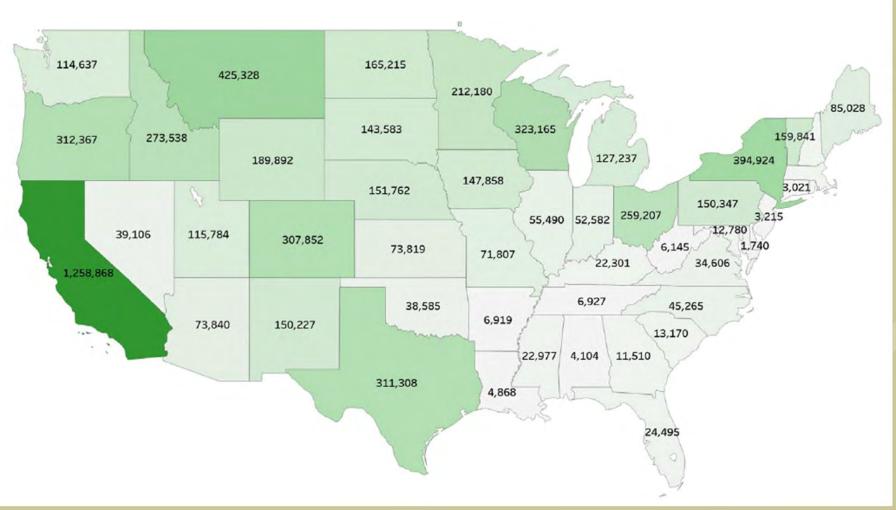





- 2) Oats (Sumo)
- 3) Barley (Winter)
- 3) Peas (Winter)
- 4) Hybrid Winter Rye
- 5) Ancient Grains (Emmer / Spelt / Eincorn)
- 6) Perennial Wheat and Rye
- 7) Millets
- 8) Hemp
- 6) Soybeans (Human consumption)


### U.S. organic food retail sales




Note: e = estimated

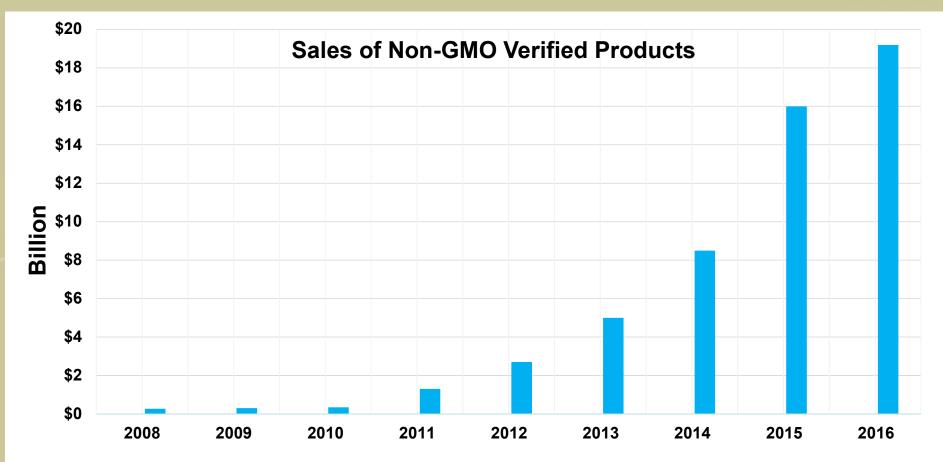
Source: USDA. Economic Research Service using data from the Nutrition Business Journal (NBJ), 2015.





## Mercaris Estimated 2017 Total Organic Acreage (1,000 Acres)









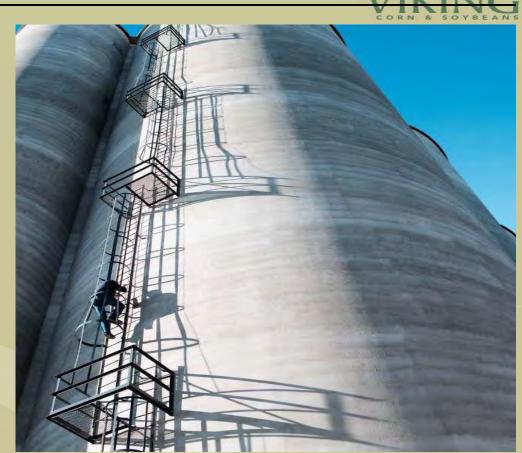



## Currently demand continues to grow.



## St. Ansgar, IA

- 290 miles away
- Largest mill
- Mill 6 different small grains
- Organic & Conventional
- Recent expansion of 2 million bushels in storage
- Employ about 160 people






#### St. Ansgar, IA grain usage

VIKING

- Oats 66%
- Organic oats 23%
- Barley 4%
- Organic soft white wheat 1.8%
- Soft white wheat 1.5%
- Red wheat 1.3%
- Rye 0.82%
- Organic barley 0.5%
- Organic rye 0.17%
- Organic red wheat 0.15%



#### TOTAL ORGANIC OAT ORIGINS 08/09-15/16



• While SK remains our most significant source of organic oats (71% of supply in 2012-13), the volume we source from AB, BC, and the US have all grown considerably.

2008-09 2012-13 2015-16







| MT      | % change<br>08/09 to 15/16 |
|---------|----------------------------|
| ВС      | +148%                      |
| AB      | +311%                      |
| SK      | +21%                       |
| MB      | +23%                       |
| USA     | +378%                      |
| Imports | N/A                        |

| <500       |
|------------|
| 500-2000   |
| 2000-10000 |
| >10000     |

### Current prices

- Oats \$3.10/bu DLVD through March
  - \$3.25/bu April-June
  - New Crop \$3.00/bu August-October
  - Transitional extra .15/bu premium
- Rye \$5.50/bu through May
- Barley \$4.25/bu food & \$4.00/bu pet food
- Hard red wheat (spring or winter) -\$6.25/bu
- Triticale \$7.00/bu
- Jessie VanderPoel 952-983-1277 or jessie.vanderpoel@grainmillers.co m
- Spec sheets and variety lists here
- Can get you a picked up on the farm (FOB) bid



- AOG
- Get used to sending samples

## Organic Prices

- · Organic oats -
  - \$6.00/bushel DLVD and \$6.25/bushel DLVD April June
- Organic barley -
  - \$9.25/bushel DLVD indication
- Organic hard red wheat -
  - \$15.00/bushel DLVD indication
- Organic soft white wheat -
  - \$15.75/bushel DLVD
- Organic rye -
  - \$9.00/bushel DLVD indication
- Organic corn
  - \$9.75/bu DLVD to St. Peter, MN Jan-Sept
- Jessie VanderPoel 952-983-1277 or jessie.vanderpoel@grainmillers.com
- Corn Amanda Eustice 952-983-1282 or amanda.eustice@grainmillers.com



## Oats



## **Breeding work:**

- More breeding work being done in recent years
- Breeding for Organic systems
- Melanie Caffé-Treml SDSU (Sumo Oats)



Some of the main constraints of organic oat production include weed management and test weight and thins for marketability. A significant proportion of organic producers use underseeding as a mean to control weed. With its open architecture, I believe Sumo will allow the underseeded crop to develop optimally. It is also very early (about 2 days earlier than Reins). This allows the underseeded crop to develop. As far as marketability.

Crown rust can really affect yield and test weight in susceptible and moderately susceptible varieties. Sumo has excellent crown rust resistance likely due to Pc94





Table 12. Disease characteristics of oat varieties.

| Variety    | Crown             | BYDV <sup>1</sup> | Loose             |  |
|------------|-------------------|-------------------|-------------------|--|
|            | Rust <sup>1</sup> |                   | Smut <sup>1</sup> |  |
|            |                   | (1-9)             |                   |  |
| Antigo     | 2                 | 7                 | 3                 |  |
| Badger     | 6                 | 5                 | 1                 |  |
| Betagene   | 4                 | 6                 | 1                 |  |
| Colt       | 6                 | 7                 | 1                 |  |
| CS Camden  | 4                 | -                 | 2                 |  |
| Deon       | 3                 | 4                 | 1                 |  |
| Esker      | 5                 | 5                 | 1                 |  |
| Goliath    | 5                 | 2                 | 3                 |  |
| Hayden     | 5                 | 3                 | 1                 |  |
| Horsepower | 6                 | 7                 | 3                 |  |
| Jury       | 5                 | 5                 | 3                 |  |
| Natty      | 6                 | 4                 | 1                 |  |
| Newburg    | 5                 | 3                 | 4                 |  |
| Reins      | 6                 | -                 | 1                 |  |
| Rockford   | 6                 | 3                 | 2                 |  |
| Ron        | 4                 | 6                 | 1                 |  |
| Saber      | 6                 | 6                 | 6                 |  |
| Shelby 427 | 6                 | 6                 | 1                 |  |
| Souris     | 6                 | 5                 | 1                 |  |
| Streaker   | 5                 | 5                 | 1                 |  |
| Sumo       | 5                 | -                 | 1                 |  |

<sup>1 1 =</sup> most resistant and 9 = most susceptible

Table 11. Origin and agronomic characteristics of oat varieties in Minnesota in multiple-year comparisons (2015-2017).

| Variety                | Origin <sup>1</sup> | Year of | Legal        | Seed    | Days to | Plant    | Straw                 | Test     | Groat <sup>3</sup> | Grain   | Oil <sup>4</sup> |
|------------------------|---------------------|---------|--------------|---------|---------|----------|-----------------------|----------|--------------------|---------|------------------|
|                        | 11/2                | Release | Status       | Color   | Heading | Height   | Strength <sup>2</sup> | Weight   |                    | Protein |                  |
|                        |                     |         |              |         | (days)  | (inches) | (1-9)                 | (lbs/bu) | (%)                | (%)     | (%)              |
| Antigo <sup>5</sup>    | WI                  | 2017    | PVP(pending) | Yellow  | 59      | 37       | 2                     | 38       | 3                  | 14.2    | 5.2              |
| Badger                 | WI                  | 2010    | PVP          | Yellow  | 58      | 35       | 3                     | 36       | 68                 | 13.1    | 4.5              |
| Betagene               | WI                  | 2015    | PVP(pending) | Yellow  | 62      | 38       | 4                     | 35       | 72                 | 12.9    | 4.8              |
| Colt                   | SD                  | 2010    | PVP(94)      | White   | 58      | 37       | 4                     | 38       | 70                 | 13.8    | 4.6              |
| CS Camden <sup>6</sup> | Meridian Seeds      | 2013    | PVP(pending) | White   | 64      | 39       | 2                     | 35       | 67                 | 13.0    | 5.0              |
| Deon                   | MN                  | 2014    | PVP(94)      | Yellow  | 64      | 42       | 4                     | 37       | 68                 | 12.6    | 5.1              |
| Esker                  | WI                  | 2006    | PVP          | Yellow  | 61      | 38       | 3                     | 36       | 69                 | 13.8    | 4.4              |
| Goliath                | SD                  | 2013    | PVP(94)      | White   | 64      | 47       | 6                     | 37       | 69                 | 12.9    | 4.9              |
| Hayden                 | SD                  | 2015    | PVP(94)      | White   | 63      | 41       | 5                     | 38       | 69                 | 12.5    | 5.7              |
| Horsepower             | SD                  | 2012    | PVP(94)      | White   | 61      | 35       | 5                     | 36       | 70                 | 12.7    | 4.8              |
| Jury                   | ND                  | 2012    | None         | White   | 64      | 43       | 5                     | 37       | 70                 | 12.4    | 5.6              |
| Natty                  | SD                  | 2015    | PVP(94)      | White   | 61      | 42       | 4                     | 38       | 72                 | 13.8    | 4.1              |
| Newburg                | ND                  | 2011    | PVP          | White   | 64      | 44       | 6                     | 35       | 67                 | 12.0    | 5.4              |
| Reins <sup>6</sup>     | IL                  | 2016    | PVP(pending) | White   | 60      | 33       | 2                     | 38       | 69                 | 14.1    | 4.4              |
| Rockford               | ND                  | 2008    | PVP          | White   | 65      | 41       | 4                     | 37       | 68                 | 13.0    | 6.0              |
| Ron                    | WI                  | 2014    | PVP(94)      | Yellow  | 63      | 40       | 4                     | 36       | 69                 | 13.9    | 5.1              |
| Saber                  | IL                  | 2010    | PVP(94)      | Yellow  | 59      | 36       | 4                     | 37       | 72                 | 14.1    | 4.6              |
| Shelby 427             | SD                  | 2011    | PVP(94)      | White   | 60      | 40       | 4                     | 38       | 69                 | 13.2    | 5.5              |
| Souris                 | ND                  | 2008    | PVP          | White   | 63      | 38       | 5                     | 36       | 69                 | 12.6    | 4.6              |
| Streaker <sup>7</sup>  | SD                  | 2016    | PVP(94)      | Hulless | 61      | 40       | 5                     | -        | -                  |         |                  |
| Sumo <sup>5</sup>      | SD                  | 2017    | PVP(pending) | White   | 58      | 38       | 1                     | 37       |                    | 14.8    | 4.2              |



## **Breeding work:**

- . More breeding work being done in recent years
- . Kevin Smith: University of MN (spring and winter barleys)
- Pat Hayes: OSU (Naked barley)
- . Lima Grain (2 row winter barleys Violetta and Calispo
- Other private breeding companies SB 151 (6 row Winter Barley)

## **Kevin Smith: U of MN**

Kevin Smith: University of MN (spring and winter barleys)





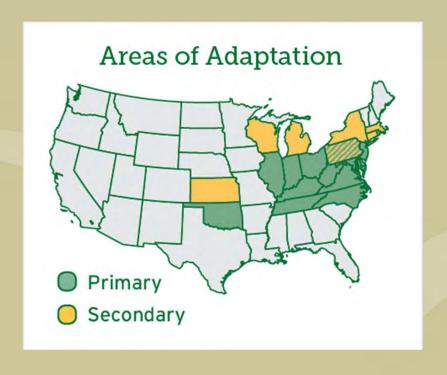
#### Research

Our research is aimed at (1) understanding the genetics of traits that will make barley profitable and sustainable in the Midwest and (2) applying that genetic understanding to develop improved varieties through breeding. Our breeding program develops spring-sown and fall-sown (winter) barley varieties.

Our spring breeding program has been in place since the early 1920's and has been focused on varieties suited to the malting and brewing industries. As such, the primary traits of interest our yield, malting quality traits, and disease resistance, in particular Fusarium head blight. Our winter breeding program started in 2009 and the major emphasis is to improve winter hardiness, yield, and malting quality. Introducing winter barley in Minnesota cropping systems could help increase crop diversity, improve ecosystem services such as improved soil conservation, nutrient cycling, and weed suppression in addition to increasing yield and facilitating earlier harvest.

# . Pat Hayes: OSU (Buck Naked barley)




#### Research

Our basic and applied research endeavors intersect on the following themes: low temperature tolerance, quantitative disease resistance, and input use efficiency - all within a framework of facultative growth habit. Realizing our goals in a timely and efficient fashion involves continuous improvement of breeding and selection procedures. We are currently implementing doubled haploid genomic selection schemes for malting and food quality. For malting and brewing, we are shifting our program from six-row to two-row and pursuing novel traits, such as processing flexibility and flavor. The thrust of our food program is on flavor and aroma within the context of whole grain products. Our germplasm and varieties are tested and grown throughout the world under a range of management scenarios, from organic to input-intensive. Our germplasm and variety release procedures are tailored to the product and range from public releases to exclusive licenses. Royalty income will help support our continued breeding efforts and initiatives.

https://www.agronomy.org/science--news/new-buck-naked-barley-food-feed-brew



# Lima Grain (Violetta and Calypso)





## Organic SB151 Winter Barley

- Early maturing, medium height with excellent standability and disease resistance
- Awnless for improved feed quality
- Excellent yield potential for animal feed
- Produced in Wisconsin
- We recommend early planting for best chance of surviving the winter. Winter barley has historically struggled to survive the winter in the Upper Midwest.



### **Seeding Recommendations:**

- Plant 2-3 Bu. (96 144 lbs) of seed per acre. Higher planting rates on more productive soils.
- Good seed-soil contact. A firm seedbed for germination and seedling development.
- **Drill about 1 to 1½ inches deep**, depending on soil moisture and soil texture.
- A grain drill with press wheels is the best because it places the seed at a uniform depth and gives good soil-seed contact. Seed placed deeper than two inches may result in reduced emergence and reduced yields.
- Can be seeded with an end-gate seeder (or fertilizer spreader) and dragged but establishment may be uneven.
- Avoid fields rotating from Corn, oats or wheat



Table 9. Relative grain yield of barley varieties at several locations in Minnesota in single-year (2017) and multiple-year comparisons (2015-2017).

| Variety           | Crookston |      | Morris |      | Ste  | Stephen           |      | Paul  | Ros  | eau  | State |      |
|-------------------|-----------|------|--------|------|------|-------------------|------|-------|------|------|-------|------|
|                   | 2017      | 3 yr | 2017   | 3 yr | 2017 | 2 yr <sup>1</sup> | 2017 | 2 yr² | 2017 | 3 yr | 2017  | 3 yr |
|                   |           |      |        |      | (9   | % of mean)-       |      |       |      |      |       |      |
| 2-row             |           |      |        |      |      |                   |      |       |      |      |       |      |
| ABI Balster       | 87        | 91   | 114    | 106  | 87   | 96                | 101  | 113   | 105  | 108  | 99    | 103  |
| ABI Growler       | 85        | 94   | 99     | 89   | 82   | 88                | 98   | 110   | 107  | 106  | 94    | 97   |
| Conlon            | 94        | 98   | 79     | 92   | 98   | 93                | 77   | 85    | 83   | 92   | 86    | 92   |
| <b>ND Genesis</b> | 99        | 100  | 103    | 104  | 95   | 103               | 120  | 126   | 82   | 100  | 100   | 105  |
| Pinnacle          | 81        | 86   | 101    | 102  | 75   | 89                | 102  | 102   | 111  | 93   | 94    | 94   |
| 6-row             |           |      |        |      |      |                   |      |       |      |      |       |      |
| Celebration       | 101       | 98   | 89     | 93   | 99   | 96                | 94   | 86    | 105  | 94   | 98    | 94   |
| Innovation        | 112       | 109  | 121    | 110  | 109  | 110               | 99   | 101   | 102  | 109  | 109   | 108  |
| Lacey             | 110       | 107  | 103    | 111  | 119  | 115               | 113  | 98    | 96   | 96   | 108   | 105  |
| Quest             | 110       | 106  | 92     | 96   | 106  | 100               | 90   | 91    | 97   | 95   | 99    | 98   |
| Rasmusson         | 114       | 110  | 119    | 105  | 110  | 116               | 110  | 106   | 120  | 112  | 115   | 110  |
| Robust            | 99        | 99   | 90     | 93   | 113  | 92                | 97   | 86    | 96   | 97   | 99    | 94   |
| Tradition         | 106       | 101  | 96     | 100  | 109  | 103               | 98   | 95    | 102  | 100  | 102   | 100  |
| Mean (bu/acre)    | 154       | 131  | 73     | 80   | 108  | 117               | 96   | 97    | 123  | 112  | 111   | 108  |
| LSD (0.05)        | 12        | 6    | 18     | 9    | 11   | 12                | 19   | 10    | 20   | 10   | 7     | 4    |

<sup>&</sup>lt;sup>1</sup> Only two years of data, 2015 and 2017

<sup>&</sup>lt;sup>2</sup> Only two years of data, 2016 and 2017

# Spring Peas

## **DS-Admiral**

#### **Yellow Field Pea**

DS-Admiral has been our "tried and true" variety for many years. Its popularity stems from several of its characteristics: stands better than most yellow field pea varieties, very broadly adapted with consistent yields and many processors ask for it by name. Its unmatched food quality comes from its near perfect round seed shape making it highly efficient for splitting. DS-Admiral will equal or out-perform the vast majority of varieties in lower-yielding enviroments and compete with or exceed varieties in higher-yielding enviroments.

Key Attributes: Broadly adapted, unmatched food quality Adaptability: All pea-growing regions of the Midwest

Yield: Above Average

Growth Habit: Upright vine type, semi-leafless

Physiological Maturity: Early-Medium

Plant Height: Medium

Seed Size: Medium (1,900-2,200 seeds/pound)

Seed Color: Yellow

Disease Resistance: Resistant to powdery mildew

## Winter Peas



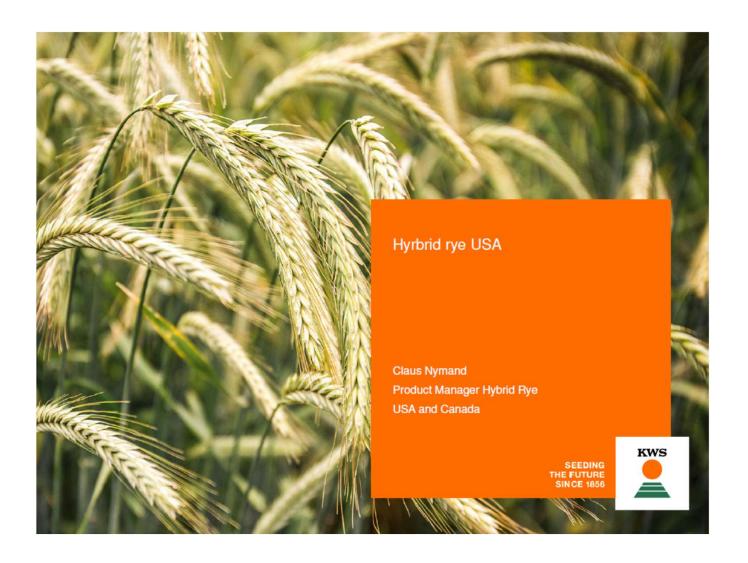
## **Austrian Winter Peas**



#### **Advantages**

Produces 60-120#/acre N
Mixes very well with brasicas
Relatively inexpensive to use as a cover crop
Generally Winterkills

#### <u>Disadvantages</u>


Aerial application provides challenges for stand establishment- but has worked!
Generally Winterkills
Needs 5-6 weeks growth for best results
Only one grazing/harvest can be expected

## Winter Peas



# Icicle Winter Pea

Icicle is a new winter pea variety for 2017. It has strong winter hardiness, excellent root system and high biomass production after dormancy is broken in the spring. Icicle has a very small seed size with great seedling viability, which makes your seed cost per acre much lower than other varieties. Icicle is free of anthacyanin, allowing it to produce a white flower. As a result, the forage from Icicle is more digestible and sweeter tasting to livestock and wildlife, compared to Austrian Winter peas.

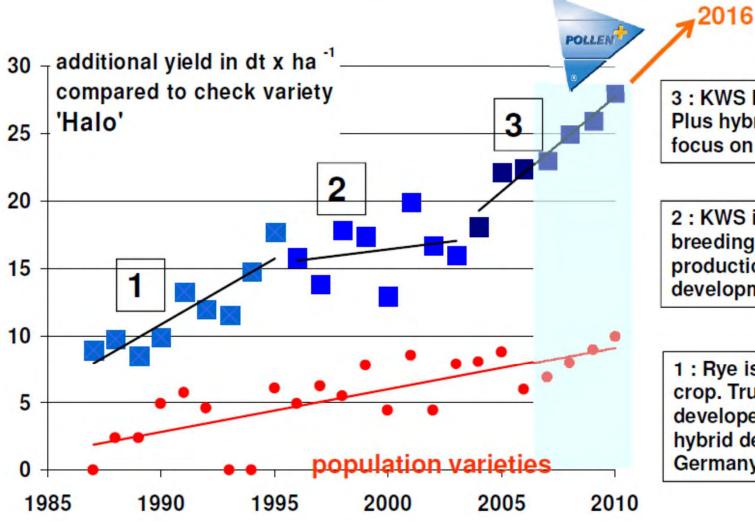


- 1) Albert Lea Seed has committed \$50,000 to supporting the University of MN Cereal Rye evaluation trial for the next 5 years.
- 2) We are co-sponsoring an onfarm hybrid rye feeding trial with PFI.
- 3) KWS is sponsoring a 4-year Cereal Rye feeding study at the University of IL.





Tom Frantzen, New Hampton IA


"The straw is very strong and the crop withstands windstorm that severely damaged our corn crop. This storm tore the roof off a house next door!." "The crop is VERY responsive to soil fertility and we are doing testing today to get some idea of what exactly this nutrient demand is."

"We did not see the grain falling off the heads. Now this may have happened and we just did not notice yet."

"SARA CARLSON I WANT TO THANK YOU AND ALSO A THANKS FOR GREAT SUPPORT FROM ALBERT LEA SEEDS HOUSE. THIS HAS BEEN A GREAT EXPERIENCE !!!!!!!!" - Tom

## Genetic improvement – hybrids and pop varieties





3: KWS launch the first Pollen Plus hybrid and could again focus on yield development.

2 : KWS invest considerable in breeding to improve pollen production to prevent development of ergot.

1 : Rye is a cross pollinating crop. True hybrids can be developed. First commecial hybrid developed in 1986 in Germany

## Prevent development of ergot!





- Use Pollen Plus varieties (All KWS Hybrids are Pollen Plus®)
- Follow the growing recommendation given.
- Be careful with hormone herbicides in spring
  - Also some herbicides against grasses can be damaging to the rye crop.
- No spraying during flowering
- No damage of plants after first elongation

# Crop development at same stage Wheat versus kws

05.00.004

## Hybrids have the ability to tiller





## Seed rate



1.6 mill seed/acre (1,6 unit/acre)

0,8 mill seed/acre (0,8 unit/acre)



## Correct establishment is the most important



- Establishment the most important at low seeding rates
- Correct planting depth is max 1 inch!







Effect of planting depth in hybrid rye, avr. of 9 trials in 2013-2014 (0,6 mill pl. pr. acre)

| Planting | Yield,   | Difference, |
|----------|----------|-------------|
| depth    | lbs/acre | lbs/acre    |
| 0,8 inch | 8345     | -           |
| 1,6 inch | 8141     | -204        |
| 2,4      | 8007     | -338        |

## Be carefull with speed at low seeding rates.

- Even distribution of seeds is very important





Table 1. Origin and agronomic characteristics of winter rye varieties in Minnesota in single-year (2017) and mutiple-year comparisons (2015-2017).

|              |                               | Year of |                   | Legal               | Primary | Seed      | Winter    | Days to | Plant | Straw |                    | Test V | Veight <sup>8</sup> | Grain I | Protein <sup>9</sup> |
|--------------|-------------------------------|---------|-------------------|---------------------|---------|-----------|-----------|---------|-------|-------|--------------------|--------|---------------------|---------|----------------------|
| Cultivar     | Agent or Breeder <sup>1</sup> | Release | Type <sup>2</sup> | Status <sup>3</sup> | Use     | Color     | Hardiness |         |       |       | Ergot <sup>7</sup> | 1 Yr   | 3 Yr                | 1 Yr    | 3 Yr                 |
| 71.          |                               |         |                   |                     |         |           |           |         |       | (1-9) | )                  |        |                     |         |                      |
| Aroostook    | <b>USDA-NRCS</b>              | 1981    | OPV               | None                | Grain   | Blue/Grey | 6         | 1       | 5     | 9     | 4                  | 5      | 4                   | 1       | 3                    |
| Elbon        | OK                            | 1956    | <b>OPV</b>        | None                | Forage  | Green     | 4         | 1       | 4     | 7     | 5                  | 2      | 3                   | 2       | 3                    |
| Hazlet       | SeCan                         | 2006    | OPV               | None                | Grain   | Blue/Grey | 2         | 7       | 4     | 4     | 1                  | 2      | 1                   | 8       | 9                    |
| KWS Bono     | KWS                           | 2013    | Hybrid            | N/A                 | Grain   | Green     | 1         | 6       | 1     | 1     | 1                  | 1      | 1                   | 9       | 9                    |
| KWS Brasetto | KWS                           | 2007    | Hybrid            | N/A                 | Grain   | Blue/Grey | 1         | 7       | 1     | 1     | 1                  | 5      | 4                   | 9       | 9                    |
| Maton II     | Oklahoma Genetics, Inc.       | 2006    | OPV               | None                | Forage  | Green     | 9         | 1       | 5     | 7     | 7                  | 3      | 4                   | 2       | 3                    |
| Musketeer    | SeCan                         | 1981    | OPV               | None                | Grain   | Green     | 6         | 3       | 3     | 9     | 2                  | 2      | 2                   | 6       | 6                    |
| ND Dylan     | NDSU                          | 2016    | OPV               | None                | Grain   | Green     | _         | 6       | 5     | 9     | 2                  | 3      | _                   | 6       | _                    |
| Oklon        | OK                            | 1993    | OPV               | None                | Forage  | Green     | 9         | 1       | 5     | 6     | 6                  | 4      | 3                   | 2       | 3                    |
| Prima        | SeCan                         | 1984    | OPV               | None                | Grain   | Green     | 3         | 6       | 6     | 6     | 1                  | 3      | 3                   | 6       | 7                    |
| Rymin        | MN                            | 1973    | OPV               | None                | Grain   | Blue/Grey | 1         | 6       | 4     | 8     | 2                  | 2      | 1                   | 6       | 7                    |
| Spooner      | WI                            | 1992    | <b>OPV</b>        | None                | Grain   | Yellow    | 5         | 4       | 5     | 6     | 1                  | 4      | 2                   | 5       | 6                    |
| Wheeler      | MI                            | 1972    | OPV               | None                | Forage  | Yellow    | 5         | 9       | 9     | 8     | 9                  | 8      | 9                   | 1       | 1                    |
| LSD(0.1)     |                               |         |                   |                     |         |           | 4         | 2       | 1     | 2     | 2                  | 1      | 1                   | 1       | 1                    |
|              |                               |         |                   |                     |         |           |           |         |       |       |                    |        |                     |         |                      |

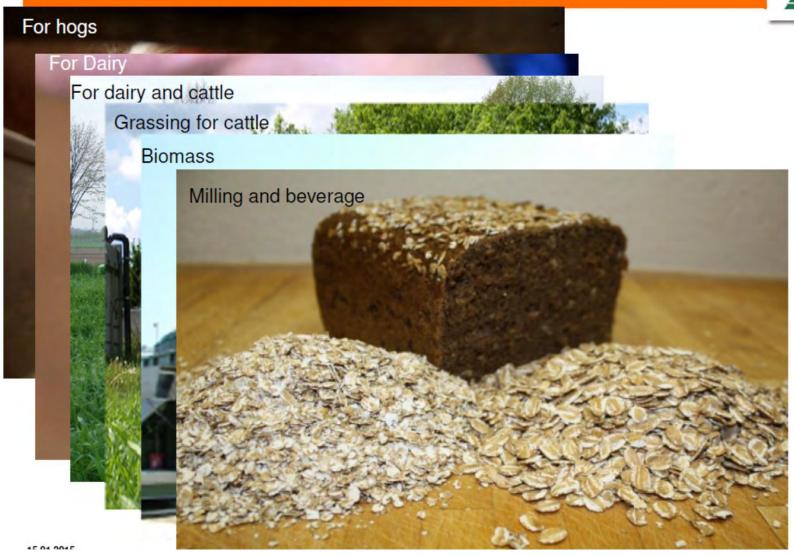
 $<sup>^{4}</sup>$ 1-9 rating with 1 = earliest and 9 = latest.

 $<sup>^{5}</sup>$ 1-9 rating with 1 = shortest and 9 = tallest.

 $<sup>^{6}</sup>$ 1-9 rating with 1 = strongest and 9 = weakest.

 $<sup>^{7}</sup>$ 1-9 rating with 1 = most resistant and 9 = least resistant.

 $<sup>^{8}</sup>$ 1-9 rating with 1 = highest and 9 = lowest.


Table 2. Relative grain yield of winter rye varieties in five Minnesota locations in single -year (2017) and multiple year comparisons (2015-2017).

|                             | Lamberton  |            | Le Center  |            | St.        | Paul       | Kimball <sup>2</sup> | Crookston  |            | State     |            |
|-----------------------------|------------|------------|------------|------------|------------|------------|----------------------|------------|------------|-----------|------------|
| Cultivar                    | 2017       | 3 Yr       | 2017       | 3 Yr       | 2017       | 3 Yr       | 2 Yr                 | 2017       | 3 Yr       | 2017      | 3 Yr       |
| Aroostook                   | 81         | 78         | 53         | 70         | 53         | 77         | 70                   | 78         | 68         | 73        | 67         |
| Elbon                       | 84         | 84         | 86         | 78         | 55         | 73         | 78                   | 77         | 72         | 78        | 73         |
| Hazlet                      | 116        | 115        | 120        | 119        | 155        | 132        | 119                  | 120        | 129        | 123       | 125        |
| KWS Bono <sup>1</sup>       | 153        | 160        | 249        | 190        | 210        | 173        | 190                  | 165        | 172        | 175       | 187        |
| KWS Brasetto <sup>1</sup>   | 144        | 141        | 188        | 162        | 187        | 157        | 162                  | 157        | 170        | 162       | 167        |
| Maton II                    | 80         | 77         | 70         | 73         | 62         | 75         | 73                   | 68         | 64         | 72        | 63         |
| Musketeer                   | 95         | 95         | 69         | 89         | 83         | 81         | 89                   | 100        | 105        | 92        | 96         |
| ND Dylan                    | 100        | -          | 88         | -          | 105        | -          | _                    | 99         | -          | 100       | _          |
| Oklon                       | 83         | 78         | 66         | 72         | 65         | 80         | 72                   | 65         | 65         | 76        | 68         |
| Prima                       | 99         | 110        | 66         | 93         | 97         | 95         | 93                   | 113        | 110        | 98        | 108        |
| Rymin                       | 102        | 105        | 96         | 108        | 97         | 103        | 108                  | 114        | 108        | 103       | 111        |
| Spooner                     | 88         | 99         | 86         | 100        | 89         | 108        | 100                  | 102        | 96         | 84        | 101        |
| Wheeler                     | 74         | 60         | 64         | 47         | 43         | 47         | 47                   | 42         | 41         | 63        | 35         |
| Mean (bu/acre)<br>LSD (0.1) | 100.2<br>6 | 82.3<br>13 | 59.9<br>35 | 76.7<br>17 | 56.2<br>30 | 65.6<br>23 | 76.7<br>14           | 71.1<br>29 | 60.3<br>19 | 71.7<br>8 | 56.1<br>11 |

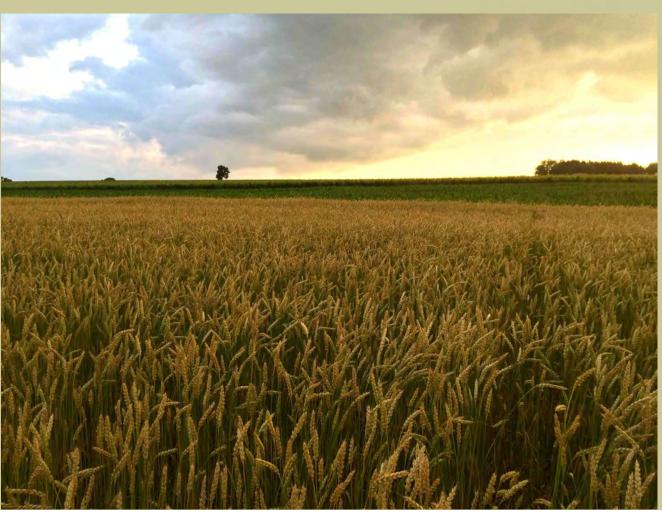
<sup>&</sup>lt;sup>1</sup>2016 and 2017 data (3 year data is predicted value). <sup>2</sup>2015 and 2016 data.

## Lots of usage possibilities of hyrbrid rye.





## **Ancient Grains**






# **Ancient Grains**







# Black Emmer



# Perennial Wheat (Kernsa)

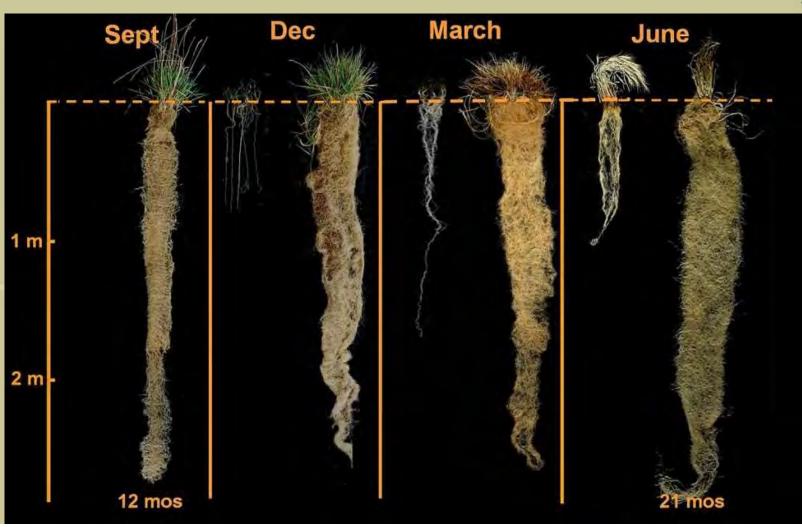




Wes Jackson: Land Institute

"Natural ecological systems are self-sustaining."




Patagonia Provisions was the first company to develop a commercial retail product made from Kernza® perennial grain for the mainstream marketplace. Patagonia took a significant risk, breaking through the initial barrier to new product development and market entry. That first-to-market product is Long Root Ale.



Winter Wheat: Right

### Perennial Wheat: Left





# Perennial Rye Grain



Perennial cereal rye developed at AAFC Lethbridge - at the University of Manitoba





# Millets



# Proso Millet

Gluten Free, High in Protein





# Millets



# **Pearl Millet**





# Hemp







# Soybeans for Food



- IA State: Walt Fehr lines (Aphid Resistance)
- Protein and Seed size
- Hilum color
- GMO contamination

IA State Soybean Lines

IA2104

IA2104RA12

IA3051RA12

IA2112RA12

IA2113RA12

IA1029



# WISCONSIN Sovbean Variety

Soybean Variety Performance Trials



2017

|        |         |                                 |                   | 2017 Chippewa Falls |                 |                        |                  |                |            |                 | 2016 Chippewa Falls |                |            |  |
|--------|---------|---------------------------------|-------------------|---------------------|-----------------|------------------------|------------------|----------------|------------|-----------------|---------------------|----------------|------------|--|
| Brand  | Entry   | Herbicide<br>Trait <sup>1</sup> | Maturity<br>Group | Maturity<br>Date    | Yield<br>(bu/A) | WM <sup>2</sup><br>(%) | Lodging<br>(1-5) | Protein<br>(%) | 0il<br>(%) | Yield<br>(bu/A) | Lodging<br>(1-5)    | Protein<br>(%) | Oil<br>(%) |  |
| Viking | 0.1202N | CN                              | 1.2               | 25-Sep              | 65              | 10                     | 1.5              | 37.1           | 17.2       | 69              | 2.8                 | 36.8           | 18.5       |  |
| Viking | 0.1572N | CN                              | 1.5               | 25-Sep              | 50              | 1                      | 1.0              | 38.1           | 17.2       | -               |                     | _              | -          |  |

|        |             |                                 |                   |                               | 2017 Arlington <sup>1</sup> |            |                  | 2017 Composition <sup>2</sup> |            | 2016 2-Test Average <sup>1</sup> |                  | 2016 Composition |            |
|--------|-------------|---------------------------------|-------------------|-------------------------------|-----------------------------|------------|------------------|-------------------------------|------------|----------------------------------|------------------|------------------|------------|
| Brand  | Entry       | Herbicide<br>Trait <sup>5</sup> | Maturity<br>Group | Maturity<br>Date <sup>2</sup> | Yield<br>(bu/A)             | WM4<br>(%) | Lodging<br>(1-5) | Protein<br>(%)                | Oil<br>(%) | Yield<br>(bu/A)                  | Lodging<br>(1-5) | Protein<br>(%)   | Oil<br>(%) |
| Viking | 0.2023N     | CN                              | 2.0               | 16-Sep                        | 71                          | 1          | 1.0              | 37.9                          | 17.2       | -                                | -                | -                |            |
| Viking | 0.2188AJ12N | CN                              | 2.5               | 20-Sep                        | *76                         | 13         | 1.0              | 36.4                          | 17.4       | 80                               | 3.1              | 36.4             | 18.5       |
| Viking | 0.2446N     | CN                              | 2.5               | 17-Sep                        | *81                         | 1          | 1.0              | 36.1                          | 18.1       | -                                |                  |                  |            |
| Viking | 0.3018N     | CN                              | 2.9               | 2-0ct                         | 65                          | 38         | 1.0              | 36.8                          | 16.4       | -                                |                  |                  |            |

### 2017 Viking Replicated Soybean Data



|           |              |         |     | Ormsby | Blue Earth | Hayfield | Austin | Nashua | LuVerne | Yield |
|-----------|--------------|---------|-----|--------|------------|----------|--------|--------|---------|-------|
| Brand     | Variety #    | Trait   | RM  | Yield  | Yield      | Yield    | Yield  | Yield  | Yield   | Avg.  |
| Viking    | O.3018N      | Organic | 2.8 |        |            |          |        | 65.8   | 60.2    | 63.0  |
| NorthStar | NS 1911NR2   | RR2     | 1.9 | 54.0   | 64.2       | 71.9     | 61.6   | 66.1   | 58.9    | 62.8  |
| Viking    | O.2188AT12N  | Organic | 2.2 | 58.9   | 62.8       | 69.2     | 55.7   | 70.2   | 59.9    | 62.8  |
| NorthStar | NS 62002NXR2 | Xtend   | 2.0 | 55.6   | 62.8       | 68.4     | 56.8   | 66.9   | 63.1    | 62.3  |
| NorthStar | NS 2031NR2   | RR2     | 2.0 | 53.0   | 64.8       | 70.1     | 55.7   | 66.4   | 59.0    | 61.5  |
| Viking    | 2518N        | None    | 2.7 |        |            |          |        | 62.3   | 59.9    | 61.1  |
| NorthStar | NS 2403NLL   | LL      | 2.4 | 53.2   | 61.1       | 71.8     | 52.1   | 66.6   | 60.9    | 61.0  |
| Viking    | 2018N        | None    | 2.0 | 55.0   | 61.4       | 69.6     | 56.2   | 65.2   | 57.9    | 60.9  |
| NorthStar | NS 61882NXR2 | Xtend   | 1.8 | 53.9   | 60.6       | 69.8     | 60.8   | 64.1   | 56.1    | 60.9  |
| Viking    | 2299N        | None    | 2.3 | 57.0   | 59.7       | 63.0     | 55.7   | 70.4   | 57.5    | 60.5  |
| Viking    | O.2399NAT12  | Organic | 2.4 | 52.4   | 63.2       | 68.1     | 54.6   | 66.3   | 57.7    | 60.4  |
| NorthStar | NS 2362NR2   | RR2     | 2.3 | 51.7   | 65.9       | 68.3     | 53.4   | 68.3   | 54.3    | 60.3  |
| Ехр.      | Exp.         | None    | 2.7 |        |            |          |        | 60.0   | 60.3    | 60.2  |
| Viking    | 2155N        | None    | 2.1 | 53.3   | 63.1       | 64.8     | 58.9   | 62.1   | 58.3    | 60.1  |
| Pioneer   | P.19T39R2    | RR2     | 1.9 | 49.3   | 62.8       | 66.0     | 59.7   | 65.7   | 55.3    | 59.8  |
| Pioneer   | P.22T73      | RR      | 2.2 | 47.7   | 63.3       | 68.2     | 60.0   | 61.1   | 57.5    | 59.6  |

### Viking Pure & Ultra-Pure Corn & Soybeans



### **Purity Projects**

- 1. Soybean Single-Row Purity increase
  - a.U.S.
  - b.Chile
- 2. 2-acre purifications of soybeans

### Soybean Single-Row Purity increase





### Soybean Single-Row Purity increase





### 2-acre purifications of soybean parent seed







### Albert Lea Seed

1414 West Main, PO Box 127, Albert Lea, MN 56007 800-352-5247 ◆ www.alseed.com





### Buyers of Non-GMO Corn, Soybeans, & Grain

Note: This list is provided as a resource only. Inclusion on this list does not imply an endorsement by Albert Lea Seed. It is the responsibility of the producer/seller to contact the buyer(s) of their choice and to negotiate a price for their product.

\* = Buyer Handles only non-GMO grain (no organic). \*\* = Handles both non-GMO and organic grain. ^ = Handles organic only

#### Brushvale Seed, Inc.\*

(Soybeans, Corn, Wheat) 1656 280<sup>th</sup> St. Breckenridge, MN 56520 Phone: (218) 643-2311 Contact: Paul Holmen pholmen@brushvaleseed.com www.brushvaleseed.com

#### **Buckwheat Growers\*\***

(Com, Small Grains, Buckwheat, Peas) 206 Aldrich Ave Wadena, MN 56482 Phone: (218) 631-9212 Contact: James Crook www.buckwheatgrowers.com

#### **Bunge Milling\*\***

(Com only)
11720 Borman Dr.
St. Louis, MO 63146
Phone: 800-528-4633
Contact Katy Repa
Katy.repa@bunge.com
www.bungenorthamerica.com

#### CHS-Main Office\*

(Corn only) 5500 Cenex Dr. Inver Grove Heights, MN 55077 Phone: (651) 355-6551 Contact: Kealan Griffin www.chsinc.com.

### CHS - Winona, MN\*

(Corn only)
988 Riverview Road
Winona, MN 55987
Phone: 800-372-8154
Contact: Brian Brauch
Brian brauch@chsine.com
www.chsine.com

#### CHS - Savage, MN\*

(Corn only) 6200 West Hwy 13 Savage, MN 55378 Phone: 800-652-9727 Contact: Clint Gergen www.chsinc.com

### **Cogdill Farm Supply**

Dunlap, IA, Harrison Cty Phone: (712) 643-5360 Contact: Rob Cogdill www.cogdillfarmsupply.com

#### Consolidated Grain & Barge-Gladstone\*

IL-164 Gladstone, IL 61437 Phone: (309) 457-4800 Contact: Kody Mefford www.cgb.com

#### Consolidated G&B-Fayette\*

701 King Street Fayette, IA 52142 Phone: 800-632-5952 Contact: Russ Lueck www.cgb.com

### Consolidated Grain & Barge\*

Multiple locations in IL, IN & OH Phone: (985) 867-3500 www.cgb.com

http://www.alseed.com/UserFiles/Documents/ALSH%20Non-GMO%20Grain%20Buyers%202016.pdf

